Welcome to csverve’s documentation!¶
csverve¶
Csverve, pronounced like “swerve” with a “v”, is a package for manipulating tabular data.
Free software: MIT license
Documentation: https://csverve.readthedocs.io.
Features¶
Take in a regular gzipped CSV file and convert it to csverve format
Merge gzipped CSZ files
Concatenate gzipped CSV files (handles large datasets)
Rewrite a gzipped CSV file (delete headers etc.)
Annotate - add a column based on provided dictionary
Write pandas DataFrame to csverve CSV
Read a csverve CSV
Requirements¶
Every gzipped CSV file must be accompanied by a meta YAML file. The meta yaml file must have the exact name as the gzipped CSV file, with the addition of a .yaml ending.
csv.gz.yaml must contain:¶
column names
dtypes for each column
separator
header (bool) to specify if file has header or not
Example:
columns:
- dtype: int
name: prediction_id
- dtype: str
name: chromosome_1
- dtype: str
name: strand_1
header: true
sep: "\t"
Credits¶
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
Installation¶
Stable release¶
To install csverve, run this command in your terminal:
$ pip install csverve
This is the preferred method to install csverve, as it will always install the most recent stable release.
If you don’t have pip installed, this Python installation guide can guide you through the process.
From sources¶
The sources for csverve can be downloaded from the Github repo.
You can either clone the public repository:
$ git clone git://github.com/mondrian-scwgs/csverve
Or download the tarball:
$ curl -OJL https://github.com/mondrian-scwgs/csverve/tarball/master
Once you have a copy of the source, you can install it with:
$ python setup.py install
Usage¶
To use csverve in a project:
import csverve
csverve¶
csverve package¶
Subpackages¶
csverve.api package¶
Submodules¶
csverve.api.api module¶
- csverve.api.api.add_col_from_dict(infile, col_data, outfile, dtypes, skip_header=False, **kwargs)[source]¶
TODO: fill this in Add column to gzipped CSV.
- Parameters:
infile –
col_data –
outfile –
dtypes –
skip_header –
- Returns:
- csverve.api.api.annotate_csv(infile: str, annotation_df: DataFrame, outfile, annotation_dtypes, on='cell_id', skip_header: bool = False, **kwargs)[source]¶
TODO: fill this in :param infile: :param annotation_df: :param outfile: :param annotation_dtypes: :param on: :param skip_header: :return:
- csverve.api.api.concatenate_csv(inputfiles: List[str], output: str, skip_header: bool = False, drop_duplicates: bool = False, **kwargs) None [source]¶
Concatenate gzipped CSV files, dtypes in meta YAML files must be the same.
- Parameters:
inputfiles – List of gzipped CSV file paths, or a dictionary where the keys are file paths.
output – Path of resulting concatenated gzipped CSV file and meta YAML.
skip_header – boolean, True = write header, False = don’t write header.
- Returns:
- csverve.api.api.concatenate_csv_files_pandas(in_filenames: Union[List[str], Dict[str, str]], out_filename: str, dtypes: Dict[str, str], skip_header: bool = False, drop_duplicates: bool = False, **kwargs) None [source]¶
Concatenate gzipped CSV files.
- Parameters:
in_filenames – List of gzipped CSV file paths, or a dictionary where the keys are file paths.
out_filename – Path of resulting concatenated gzipped CSV file and meta YAML.
dtypes – Dictionary of pandas dtypes, where key = column name, value = dtype.
skip_header – boolean, True = write header, False = don’t write header.
- Returns:
- csverve.api.api.concatenate_csv_files_quick_lowmem(inputfiles: List[str], output: str, dtypes: Dict[str, str], columns: List[str], skip_header: bool = False, **kwargs) None [source]¶
Concatenate gzipped CSV files.
- Parameters:
inputfiles – List of gzipped CSV file paths.
output – Path of resulting concatenated gzipped CSV file and meta YAML.
dtypes – Dictionary of pandas dtypes, where key = column name, value = dtype.
columns – List of column names for newly concatenated gzipped CSV file.
skip_header – boolean, True = write header, False = don’t write header.
- Returns:
- csverve.api.api.merge_csv(in_filenames: Union[List[str], Dict[str, str]], out_filename: str, how: str, on: List[str], skip_header: bool = False, **kwargs) None [source]¶
Create one gzipped CSV out of multiple gzipped CSVs.
- Parameters:
in_filenames – Dictionary containing file paths as keys
out_filename – Path to newly merged CSV
how – How to join DataFrames (inner, outer, left, right).
on – Column(s) to join on, comma separated if multiple.
skip_header – boolean, True = write header, False = don’t write header
- Returns:
- csverve.api.api.read_csv(infile: str, chunksize: Optional[int] = None, usecols=None, dtype=None) DataFrame [source]¶
Read in CSV file and return as a pandas DataFrame.
Assumes a YAML meta file in the same path with the same name, with a .yaml extension. YAML file structure is atop this file.
- Parameters:
infile – Path to CSV file.
chunksize – Number of rows to read at a time (optional, applies to large datasets).
usecols – Restrict to specific columns (optional).
dtype – Override the dtypes on specific columns (optional).
- Returns:
pandas DataFrame.
- csverve.api.api.remove_duplicates(filepath: str, outputfile: str, skip_header: bool = False) None [source]¶
remove duplicate rows
Assumes a YAML meta file in the same path with the same name, with a .yaml extension. YAML file structure is atop this file.
- Parameters:
filepath – Path to CSV file.
outputfile – Path to CSV file.
- csverve.api.api.rewrite_csv_file(filepath: str, outputfile: str, skip_header: bool = False, dtypes: Optional[Dict[str, str]] = None, **kwargs) None [source]¶
Generate header less csv files.
- Parameters:
filepath – File path of CSV.
outputfile – File path of header less CSV to be generated.
skip_header – boolean, True = write header, False = don’t write header.
dtypes – Dictionary of pandas dtypes, where key = column name, value = dtype.
- Returns:
- csverve.api.api.simple_annotate_csv(in_f: str, out_f: str, col_name: str, col_val: str, col_dtype: str, skip_header: bool = False, **kwargs) None [source]¶
Simplified version of the annotate_csv method. Add column with the same value for all rows.
- Parameters:
in_f –
out_f –
col_name –
col_val –
col_dtype –
skip_header –
- Returns:
- csverve.api.api.write_dataframe_to_csv_and_yaml(df: DataFrame, outfile: str, dtypes: Dict[str, str], skip_header: bool = False, **kwargs) None [source]¶
Output pandas dataframe to a CSV and meta YAML files.
- Parameters:
df – pandas DataFrame.
outfile – Path of CSV & YAML file to be written to.
dtypes – dictionary of pandas dtypes by column, keys = column name, value = dtype.
skip_header – boolean, True = skip writing header, False = write header
- Returns:
Module contents¶
csverve.core package¶
Submodules¶
csverve.core.csverve_input module¶
- class csverve.core.csverve_input.CsverveInput(filepath: str)[source]¶
Bases:
object
- property columns: List[str]¶
get the list of columns
- Returns:
separator
- property dtypes: Dict[str, str]¶
get the data types
- Returns:
dtypes
- property header: bool¶
True if file has header
- Returns:
header
- read_csv(chunksize: Optional[int] = None, usecols=None, dtype=None) DataFrame [source]¶
Read CSV.
- Parameters:
chunksize – Number of rows to read at a time (optional, applies to large datasets).
usecols – Restrict to specific columns (optional).
dtype – Override the dtypes on specific columns (optional).
- Returns:
pandas DataFrame.
- property separator: str¶
get the separator used
- Returns:
separator
- property yaml_file: str¶
Append ‘.yaml’ to CSV path.
- Returns:
YAML metadata path.
csverve.core.csverve_output module¶
csverve.core.csverve_output_data_frame module¶
- class csverve.core.csverve_output_data_frame.CsverveOutputDataFrame(df: DataFrame, filepath: str, dtypes: Dict[str, str], skip_header: bool = False, na_rep: str = 'NaN', sep: str = ',')[source]¶
Bases:
CsverveOutput
csverve.core.csverve_output_file_stream module¶
- class csverve.core.csverve_output_file_stream.CsverveOutputFileStream(filepath: str, dtypes: Dict[str, str], columns: List[str], skip_header: bool = False, na_rep: str = 'NaN', sep: str = ',')[source]¶
Bases:
CsverveOutput
csverve.core.irregular_csv_input module¶
- class csverve.core.irregular_csv_input.IrregularCsverveInput(filepath: str, dtypes: Dict[str, str], sep=',')[source]¶
Bases:
object
- get_columns() List[str] [source]¶
Detect whether file is tab or comma separated from header. :return: ‘ ‘, or ‘,’, or raise error if unable to detect separator.
- read_csv(chunksize: Optional[int] = None) DataFrame [source]¶
Read CSV.
- Parameters:
chunksize – Number of rows to read at a time (optional, applies to large datasets).
- Returns:
pandas DataFrame.
- property yaml_file: str¶
Append ‘.yaml’ to CSV path.
- Returns:
YAML metadata path.
Module contents¶
csverve.errors package¶
Submodules¶
csverve.errors.errors module¶
Module contents¶
csverve.utils package¶
Submodules¶
csverve.utils.utils module¶
- csverve.utils.utils.merge_dtypes(dtypes_all: List[Dict[str, str]]) Dict[str, str] [source]¶
Merge pandas dtypes.
- Parameters:
dtypes_all – List of dtypes dictionaries, where key = column name, value = pandas dtype.
- Returns:
Merged dtypes dictionary.
- csverve.utils.utils.merge_frames(frames: List[DataFrame], how: str, on: List[str]) DataFrame [source]¶
Takes in a list of pandas DataFrames, and merges into a single DataFrame. #TODO: add handling if empty list is given
- Parameters:
frames – List of pandas DataFrames.
how – How to join DataFrames (inner, outer, left, right).
on – Column(s) to join on, comma separated if multiple.
- Returns:
merged pandas DataFrame.
Module contents¶
Submodules¶
csverve.cli module¶
Console script for csverve.
Module contents¶
Contributing¶
Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
You can contribute in many ways:
Types of Contributions¶
Report Bugs¶
Report bugs at https://github.com/mondrian-scwgs/csverve/issues.
If you are reporting a bug, please include:
Your operating system name and version.
Any details about your local setup that might be helpful in troubleshooting.
Detailed steps to reproduce the bug.
Fix Bugs¶
Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to implement it.
Implement Features¶
Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to whoever wants to implement it.
Write Documentation¶
csverve could always use more documentation, whether as part of the official csverve docs, in docstrings, or even on the web in blog posts, articles, and such.
Submit Feedback¶
The best way to send feedback is to file an issue at https://github.com/mondrian-scwgs/csverve/issues.
If you are proposing a feature:
Explain in detail how it would work.
Keep the scope as narrow as possible, to make it easier to implement.
Remember that this is a volunteer-driven project, and that contributions are welcome :)
Get Started!¶
Ready to contribute? Here’s how to set up csverve for local development.
Fork the csverve repo on GitHub.
Clone your fork locally:
$ git clone git@github.com:your_name_here/csverve.git
Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:
$ mkvirtualenv csverve $ cd csverve/ $ python setup.py develop
Create a branch for local development:
$ git checkout -b name-of-your-bugfix-or-feature
Now you can make your changes locally.
When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:
$ flake8 csverve tests $ python setup.py test or pytest $ tox
To get flake8 and tox, just pip install them into your virtualenv.
Commit your changes and push your branch to GitHub:
$ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature
Submit a pull request through the GitHub website.
Pull Request Guidelines¶
Before you submit a pull request, check that it meets these guidelines:
The pull request should include tests.
If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst.
The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check https://travis-ci.com/mondrian-scwgs/csverve/pull_requests and make sure that the tests pass for all supported Python versions.
Tips¶
To run a subset of tests:
$ python -m unittest tests.test_csverve
Deploying¶
A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in HISTORY.rst). Then run:
$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags
Travis will then deploy to PyPI if tests pass.
Credits¶
Development Lead¶
Shah Lab <todo@todo.com>
Contributors¶
None yet. Why not be the first?
History¶
0.1.0 (2020-12-16)¶
First release on PyPI.